If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49m^2+140m=+100
We move all terms to the left:
49m^2+140m-(+100)=0
We add all the numbers together, and all the variables
49m^2+140m-100=0
a = 49; b = 140; c = -100;
Δ = b2-4ac
Δ = 1402-4·49·(-100)
Δ = 39200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39200}=\sqrt{19600*2}=\sqrt{19600}*\sqrt{2}=140\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-140\sqrt{2}}{2*49}=\frac{-140-140\sqrt{2}}{98} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+140\sqrt{2}}{2*49}=\frac{-140+140\sqrt{2}}{98} $
| 3/4x-1=14-27 | | 3/4x-4=1/2x-4 | | 5x-2=5(x+3) | | 20=5-0.25x | | 2+1.1x-0.1x^2=4 | | 4=(0.3f-4.5) | | 10=2/5x-4 | | F=1/2(r+6.5 | | 1/2n-5+2/3×=7/6×+4 | | 82=-7x-4(2x+2) | | -6x+-5x+7+x=39 | | 6x-10-3x=11 | | 1.5(b+2)=2b-9+15b | | 4/3x+5=-11 | | 10-2x+11=13 | | X+x²=182 | | 7k+24=-16-3 | | x-4/4=8 | | 79=7-6x | | 20x^2+70x=0 | | 4|x–9|+6=-42 | | -2=7a+4-10a | | 2+1.1x-0.1x^2=3 | | 150x+3.50*255=2000 | | 5-4(n-5)=25+4 | | 5x+9=2(4x-3) | | 70=8r+6 | | 2(z-6)=6 | | 3/2-c-3c+4=5/2c+7-3 | | 4|x–9|+6=42 | | 16=-6x+2(2x+8) | | -5a+32=8a+19 |